0%

(ACM ICBCB 2018) Diagnose like a Radiologist:Attention Guided Convolutional Neural Network for Thorax Disease Classification

Keyword [ChestX-ray14] [Attention]

Guan Q, Huang Y, Zhong Z, et al. Diagnose like a radiologist: Attention guided convolutional neural network for thorax disease classification[J]. arXiv preprint arXiv:1801.09927, 2018.



1. Overview


1.1. Motivation

  • existing methods use global image as input
  • data limitation
    • small localized areas
    • poor alignment

In this paper, it proposes AG-CNN (Attention Guided CNN)

  • three-branch. global, local and fusion
    • learn a global CNN branch using global images
    • crop local region based on global branch
    • fuse global and local
  • JSRT dataset
  • Shenzhen chest X-ray set
  • Montgomery County chest X-ray set
  • Indiana University Chest X-ray Colletion dataset



2. Architecture


2.1. AG-CNN



  • output. [l1, l2, …, l15]. 14 disease + 1 No Finding

2.2. Algorithm



2.3. Attention Guided Mask Inference



  • absolute value
  • (b, k, h, w) – (b, 1, h, w)


  • binary mask. threshhold=0.7
  • crop based on [x_min, y_min, x_max, y_max]

2.4. Training Strategy

  • fine-tune global branch
  • fine-tune local branch, fix global branch
  • fine-tune fusion branch, fix local and global branch



3. Experiments


3.1. Dataset

  • randomly shuffle 70-10-20

3.2. Details

  • 256x256, randomly crop 224x224
  • random horizontal flipping
  • normalize by ImageNet mean value
  • test. center crop

3.3. Comparison



3.4. Others

3.4.1. Threshold



3.4.2. Training Strategy



3.4.3. Heat Map Analysis